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corresponding to the Patterson series in accordance with 
the following scheme: 

.F~ I o 

--> o F~,-IF,~[ ~ -> IFnl ~ Fo / "  

The first matrix represents the hermitian form 

Fo X1 X1 + Fn X1 X~ + F~ X~ X 1 + 2" 0 X9 X~ 

related to the original series, and the last matrix 
represents the hermitian form corresponding to the 
Patterson series. The second matrix is the diagonal 
form of the first and may be derived from it by a linear 
transformation. The third and fourth matrices are 
similarly related. Evidently a linear transformation 
relates the second and third matrices. 

The practical significance of this type of transforma- 
tion is that  the inequalities associated with the Patterson 

series involve only the magnitudes of the Fourier 
coefficients. These inequalities have the obvious 
advantage that  the quantities contained in them are 
directly derivable from experiment. Perhaps other 
intermediate cases occur in which inequalities arise tha t  
contain some complex coefficients and the magnitudes 
of others. Certainly, it is worth while investigating the 
further implications of linear transformation theory. 
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The variation of the integrated Bragg reflexion of perfect absorbing crystals with the degree of 
asymmetry of the reflexion, structure factor and wave-length is studied theoretically and compared 
with that of ideally mosaic absorbing crystals. I t  is shown that the integrated reflexion of a perfect 
crystal is always less than that of a corresponding mosaic crystal. If absorption is very large, or if the 
reflexion is very asymmetric, the integrated reflexion of the perfect crystal approaches asymptotically 
that of the mosaic crystal. Approximate formulae are given for the integrated reflexion as a function of 
asymmetry of the reflexion, structure factor, and absorption coefficient. I t  is suggested that accurate 
determinations of structure factors may be made by the use of asymmetric reflexions for which the 
integrated reflexion becomes more nearly independent of the texture of the crystals. 

1. Introduction 

Recent experiments on the variation of the integrated 
reflexion of crystals with wave-length of the X-rays 
(Wooster & Macdonald, 1948) and asymmetry  of the 
reflexion (Evans, Hirsch & Kellar, 1948) led the authors 
to a theoretical investigation of the integrated reflexion 
of perfect absorbing crystals as a function of the degree 
of asymmetry  of the reflexion,* structure factor and 
absorption coefficient. For a mosaic crystal, expressions 
have been derived previously for the variation of 
integrated reflexion with these factors (see James, 1948). 
For a perfect crystal the dynamical theory of X-ray 
reflexions, as developed by EwMd (1918, 1924), Kohler 
(1933) and yon Laue (1941), takes all these variables 
into account and leads to an expression for the intensity 

* A reflexion is asymmetric if the reflecting planes make an 
angle with the surface of the crystal. 

of the X-ray beam reflected by the crystal at  a parti- 
cular setting (e.g. Zachariasen, 1945). To obtain the 
integrated reflexion, it is necessary to integrate this 
expression over a range of settings of the crystal. Such 
an integration can be carried out analytically only in 
some special cases. Thus, when absorption is negligible, 
the well-known Darwin (1914) formula is obtained. 
When absorption is very large, it will be shown in 
a later section tha t  the integrated reflexion tends to 
equal that  for a mosaic crystal. In the general case the 
reflexion curves can be calculated and integrated 
graphically. Examples of such curves have been given 
by Prins (1930), Par ra t t  (1932), Renninger (1934,1937 a) 
Zachariasen (1945), etc., and Renninger has also per- 
formed the graphical integration in a few special cases. 

The present authors have attacked the problem in 
a general way. From Zachariasen's t reatment  of the 
dynamical theory, it follows tha t  the effects of degree 
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of asymmetry, structure factor and absorption can all 
be described in terms of two parameters related to these 
factors. A number ofreflexion curves for different values 
of these two parameters have been calculated and 
integrated graphically. The results of these calculations 
have then been used to discuss-in general terms the 
variation of the integrated reflexion with the factors 
mentioned above. I t  must be emphasized here that  the 
results of this paper have been obtained only for the 
'Bragg'  type of reflexions, in which the refected beam 
emerges from the same crystal surface on which the 
X-ray beam is incident. Further, it has been assumed 
that  the crystal possesses an inversion centre. 

The results show that  the integrated reflexion of 
a perfect crystal is always less than that of a mosaic 
crystal. I f  the structure factor is small or the absorption 
coefficient large, or if the reflexion is highly asymmetric, 
then the integrated reflexion for a perfect crystal 
approaches asymptotically the value for a mosaic 
crystal. Empirical formulae are given which describe 
the variation of integrated re flexion with these factors. 
I t  is pointed out that  accurate structure factor determi- 
nations can be made either by using asymmetric 
reflexions or by choosing a wave-length for which the 
absorption is relatively heavy, for, under either of these 
conditions, the integrated reflexion becomes nearly 
independent of the texture of the crystal. 

The paper is divided into two parts. The first part 
discusses the results obtained from the graphical 
integration. In this part the notation used is that  
commonly employed by most crystallographers. The 
second part contains the mathematical treatment of 
the problem leading to the graphical integration. I t  is 
also proved there analytically that  when absorption is 
very strong the integrated reflexion of a perfect 
crystal equals that  of a mosaic crystal. The notation 
used in Part  I I  is that  employed by Zachariasen (1945), 
on whose treatment these calculations are based. 

Notation 
O 

e. 
¢ 

PART I 

Grazing angle of incidence on crystal planes. 

Bragg angle. 
Acute angle between crystal surface and re- 

flecting planes (positive ff the reflected beam 
is concentrated). 

b Ratio of the direction cosines of incident and 
emergent beams - sin (¢ + Ü)/sin ( ¢ -  0). 

/? Variable to represent asymmetry 

(_= tan C/tan OB). 
H Stands for hkl. 
~'H Structure factor of index H (= F'~+ iF~). 

1 - b  mc ~ # v/(1 +k~) 

=log~ (32/3~). 

m 

c 

# 
N 

A 
K 

PH 

! 

PH 

J 

j ,  

Electronic charge. 

Electronic mass. 

Velocity of light. 
Linear absorption coefficient. 
Number of unit cells per cm. a 

Wave-length of the X-rays in vacuo. 
Polarization factor. K = 1 for the normal com- 

ponent and K =  I cos201 for the parallel 
component. 

Integrated reflexion of a perfect crystal on the 
glancing-angle scale. 

Integrated reflexion of a mosaic crystal on the 
glancing-angle scale. 

Integrated reflexion per unit area, called specific 
reflexion, for a perfect crystal. 

Integrated reflexion per unit area, called specific 
reflexion, for a mosaic crystal. 

2. Integrated reflexion of perfect crystals 

In Part  I I  of this paper (equation (21)), it is shown that  
the integrated reflexion for a perfect crystal on the 
usual glancing-angle scale can be written in the form 

1 K e~h 2 
PH ~]blsin2OB~mc2N[F'H[tt~(g,k) ,  (1) 

where R~(g, k) is a function only of two parameters g and 
k, which are given by 

1 - b  mcg #~/(l+k~) (2) 
g= - 4 K  ~/] b I eeAN ] F H [ 

and k= F~/F '  H. (3) 

The considerations of this paper have been confined 
to '  Bragg reflexions', as mentioned earlier, and for these 
[g]>~]k[ (see Part  II,  equation (20a)). The quantities 
b and g are negative or zero, and k may be either 
positive or negative. 

The integrated re flexion p~ for a mosaic crystal can 
also be written in a form similar to (1), viz. 

1 K eg'A ~ t _ _  ! t~/ 

pH-- / lblsin2OBnmc~NIF'HlRH(g,k) ,  (4) 
t y  where RH(g,k)=Tr(1 +k2)/(41 g I). (5) 

Thus PH R~(g, k) 
t - -  t y  ! , PH RH(g,k) (6) 

t y  
so that the functions R~(g, k) and RH(g, k) can be used 
to discuss the relative variation ofPH andp~respectively 
with the parameters g and k, and therefore their relative 
variation with asymmetry of reflexion, structure factor 
and absorption coefficient. 

The values of R~ for different values of g and k have 
been obtained by calculation and graphical integration 
(see Part II).* Fig. 1 shows the variation of R~: and 
R~ with I g I for different values of k. I t  is shown in 

* The parameters g, k in R~(g, k), R'~(g, k) will be dropped 
hereafter unless required for a special reason. 
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Par t  I I  that  the integrated reflexion is independent of 
the sign of k. Thus the three thin lines represent the 
values of R~ for a perfect crystal with k=O, -4-0.1 and 
_+ 0-2, while the thick lines are the corresponding curves 
of R~  for a mosaic crystal. Since ]g]~>[k[ for a Bragg 
reflexion, the curves for values of k other than zero do 
not start from the zero abscissa. The curves show that  
for a given value of k, R~ is less than R~ for all values of 
g and that  it tends to equal R~ when [g[ is large. This 
is true for all three values of [k[ considered. Actually, 
the maximum difference between the two, viz. for k = 0, 
is less than 10 % for ] g [ =  1"0 and less than 1% for 
[ g [ > 2.5. The variation of integrated reflexion with 
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Fig .  1. I n t e g r a t e d  ref lexion in y -un i t s  as  a f u n c t i o n  of  I g [, for 
va r ious  va lues  of  k. T h i n  l ines r ep resen t  R~  for  per fec t  
c rys ta ls ,  ba sed  on  t h e  empi r ica l  fo rmula .  Circles r ep resen t  
t he  resul t s  o f  t he  n u m e r i c a l  ca lcu la t ion .  T h i c k  l ines re- 
p r e sen t  R ~  l for mosa ic  crys ta ls .  

[k I is comparatively small, p~ is proportional to 
(1 +kS), and generally [ k I <0.1, so that  p~ is affected 
only by about 1%.  As shown in the curves, both PH and 
PH are increasing functions of ]k I. The variation with 
I]c of ,o H is larger than that  of p~ for small values of 
]g I, but is the same for large values of [g[. This is ap- 
parent from the curves if ordinates are compared for 
the same abscissae. I t  is to be noted that  the three sets 
of curves have been displaced laterally to avoid over- 
lapping. 

Thus it appears that  even if values of ]k[ greater 
than 0.2 are encountered in practice, the general trend 
of the curves will be the same and that  the curve for 
R~ will always be below that  for R~ (for the same value 
of k). Further, it is proved analytically in Part  I I  that  
for any value of k, R~  is equal to R~ for large values of 
[g ],i.e. 1 ,~ [ g [ >> ]k]. Thus it appears as a general result 

that  the integrated reflexion of a perfect crystal is always 
less than that  of a mosaic crystal, and that  it approaches 
asymptotically the value for a mosaic crystal for large 
values of [g[. 

The authors have developed an empirical formula 
which describes the variation of R~ with g and k. I t  is 

n(1 + k  s) C = loge 32 
R~ = 4{exp [ -  (1 + k2) 2 ([ g ]+  C)] + ] g I}' 37r" 

(7) 
This fits the actual values to within 2 °/o, which is about 
the accuracy of evaluation of R~. In fact, in Fig. 1, the 
continuous lines have been drawn from the empirical 
formula, while the circles represent the calculated 
points. I t  may be noted that  the empirical formula 
reduces to the mosaic formula (5) for large ]g] and to 
R ~ =  @ for I g I =0,  which is the value given by Darwin's 
formula for a perfect, non-absorbing crystal. For small 
]gI one obtains, for k = 0, 

R ~ = S ( 1 - 2 . 4  [ g ]), (8) 

which is a good approximation for ]g]<0.1 .  This 
may be compared with the approximate formula 

v 8 RH----~(1--2I g I ) 
deduced by Zachariasen (1945) from purely general 
reasoning. 

The empirical formula may be used for calculating 
the integrated reflexion of a perfect crystal when 
absorption is present and the reflexion is asymmetric. 
The complete formula for PH corresponding to each of 
the polarized components is 

1 K e ~ M  • 

PH = ~/[ b [ sin 20 B 4mc 2 
~/(1 + k s) 

x N [ F H I  { e x p [ _ ( 1 T k ~ ) ~ ( [ g [ + C ) ] + l g l } .  (9) 

If  I g I < O. 1, we have the following approximate formula 
for unpolarized radiation 

1 8 (I+]coS2OBIICa2NIFH I 
PH-- /] b [ -~n 2 sin20 B mc ~ 

1.6 (1 -b )  A/z 
- n I bl sin20 B' (10) 

By these formulae, the structure factor, [ FH], can be 
derived from the experimentally determined value 
of fill" 

3. Physical interpretation of the results 
In an absorbing crystal, the penetration of the incident 
beam is determined by the energy which it loses owing 
to absorption and extinction. I f  absorption is supposed 
to be absent, then the penetration of the X-ray beam 
into the crystal is determined entirely by extinction. 
Then from equation (3-169) and Fig. 3.14 of Zachariasen 
(1945), it follows that  most of the integrated reflexion is 
provided by a thickness of crystal, to, which is of the 
order of mc2/[s in(O+¢)sin(¢_O)]  

to- Ke2~INI F'H I 
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If, for the same crystal, we suppose extinction to be 
absent, but  absorption to be present, then the depth, 
t, of the crystal which contributes effectively to most of 
the integrated reflexion is of the order of 

l tN ~{cosee (0 +¢)- cosec ( ¢ -  O)}" 
Thus from (2) 

t o . ( l - b )  me ~ F 4 ( l + k ~ )  

T~+K4lbl  a  IF I (XX) 
Thus, [g[ then describes the relative importance of 
extinction and absorption in determining the intensity 
of reflexion, a small value of l gl denoting a large 
extinction, and vice versa. 

The numerical calculations described in the previous 
section show tha t  p~  is always less than p~, and that  the 
ratio P~/P'H increases with increasing magnitude of g, 
reaching the value uni ty  asymptotically for large values 
of l g I- This means tha t  the more the effective penetra- 
tion of the beam into the crystal is limited by absorption 
rather than  by  extinction, the less is the difference 
between the integrated reflexions of a perfect and a 
mosaic crystal. For very large values of I g 1, absorption 
controls thepenetra t ion completely and the integrated 
reflexious for the two types of crystal become equal. 
This result is to be expected on physical grounds. The 
difference between the intensity of reflexion of a mosaic 
and of a perfect crystal is due to the multiple inter- 
ferences taking place in the latter. I f  these are in fact 
negligible, and the incident beam is extinguished by 
absorption before they become important,  then the 
difference in reflexion between the two types of crystal 
should be small, as is borne out by the calculations. 

So far the influence of the quantities g and k on the 
value of the integrated reflexion has been discussed; but  
g and k are functions of the various quantities tha t  are 
of practical importance, such as b, F,  #, h. In  the 
sections tha t  follow the variation of PH and p~  with 
asymmetry,  structure factor and wave-length are 
discussed separately. 

4. Asymmetric reflexions 
For a reflexion from a given set of lattice planes, g is 
a function of b, and therefore varies with the degree of 
asymmetry  of the reflexion with respect to the surface. 
Consequently, R ~  also varies with the degree of 
asymmetry  and, since pHoc R~/~/I b I, the integrated 
reflexion is a function of the degree of asymmetry.  

Then it follows that ,  for a mosaic crystal,* 

p ' ( f l ) / p ' ( O ) =  l - fl .  (13) 
Fig. 2 shows the variation ofp(fl)/p'(O) with/? for both 
mosaic and perfect crystals for different degrees of 
absorption, i.e. for different values of I g(0) I. All the 
curves have been calculated for k = 0. For other values 
of k a slightly different set of curves will be obtained for 
perfect crystals, but  the general features will remain the 
same. In  any particular example the variation ofp with 
asymmetry  may be computed from equation (9). 

1 - 8  1-8 

1-6 I ) 
p,~ o (~)1.41.2 ~ ,  °' / ~  / /~1~/-~ 

10 \ ) 10 

0"82~ 0"8 0'6 ~6 
0.4 ~4 
O" 0"2 

I I 
-1"0-0"8-0"6-~4-0"2 0 0!2 ~14 ~6 ~8 1"0 

Fig. 2. Variation with asymmetry (fl) ofp(fl)/p'(O) and J(fl)/J'(O). 
Thick lines a, a' are for a mosaic crystal. Thin lines are for 
a perfect crystal with /c= 0 and with values of ]g(0) l= 0-5 
for b, b'; 0.2 for c, c'; 0.1 for d, d'; and 0"05 for e, e'. 

In  addition, one may consider the variation with 
asymmetry of the integrated reflexion per unit area, 
called 'specific reflexion', and denoted by the symbol 
J for a perfect crystal and J '  for a mosaic crystal. I t  is 
clear tha t  

J = I b ] p  and g'(fl)=(1-t-fl)J'(O). (14), (15) 

Fig. 2 also shows the variation of J(,8)/J'(O) with/? for 
different values of I g(0) I for k = 0. I t  is to be noticed tha t  
these curves are the mirror-images of the curves for 
p(fl)/p'(O) with respect to the axis of ordinates. 

By equations (13) and (15), the variation of both 
p(,8)/#'(O) and J(fl)/J'(O) with/? for a mosaic crystal is 
independent of g(0) and/c, i.e. of absorption. On the 
other hand, for a perfect crystal, the variation is a 
function of g(0) and k, and for a given value of /c 

Suppose tha t  the surface of the crystal makes an angle 
¢ with the lattice planes. Then 

Let tan C/tan 0 B =ft. Then, as b varies from 0 to -o% 
/? varies from - 1 to + 1 and ¢ varies from - 8 B to + 8 B. 
The variable/7 can be chosen to represent the degree 
of asymmetry,  where/? is related to b by the equation 

,8-(b-.F 1) / (b-  1). (12) 

(viz. /C = 0) the curves are different for different vMues 
of g(0). Now, for grazing incidence and grazing re- 
flexion, i.e. for b--0 and -o% or f l= - 1  and + 1, the 
penetration normal to the surface is small. Con- 
sequently, one should expect the perfect crystal to have 
the same characteristics as the mosaic crystal under 
these conditions; this is shown by the fact tha t  the 
curves in Fig. 2 meet at a common point for/7 = + 1 and 

* The subscript H will be dropped when there is no confusion. 
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- 1. In particular, the specific reflexion attains a value 
2J'(0) at grazing reflexion, irrespective of the degree of 
perfection. 

This result has a bearing on the use of a perfect 
crystal as a concentrating monochromator (Fankuchen, 
1937; Evans el al. 1948). I t  has been suggested (Fanku- 
chen, 1938) that, because of extinction, a perfect 
crystal would give a better improvement in intensity 
when used as a concentrating monochromator than 
a mosaic crystal. I t  is now clear that, although 
J(1)/J(O)>J'(1)/J'(O)=2, the absolute value of the 
specific reflexion can never be greater than for a mosaic 
crystal. If  values of J/J(O) and J'/J'(O) are calculated 
from the curves shown in Fig. 2, then it is found that, 
starting from fi = 0 and proceeding towards increasing 
values of/?, J/J(O) increases more rapidly than J'/J'(O). 
This probably explains a slight deviation between 
theory and experiment found in one of the figures 
reproduced by Evans et al. (1948). In Fig. 4 of their 
paper, the experimental points for A lie significantly 
above the curve deduced from their equation (4); this 
is probably due to the fact that  the polished crystal was 
not truly mosaic. Experiments are being carried out on 
perfect crystals to test the variation of J(/?), predicted 
by theory. 

I t  must be pointed out that  the discussion in this 
section holds only in so far as the effect of refraction can 
be neglected. At very small glancing angles of the 
order of 10 -3, i.e. 3' of arc, refraction is appreciable and 
leads to complications. 

5. Variation of integrated reflexion 
with structure factor 

From (2), g is proportional to 1/I F I, so that  for a 
particular crystal the value of [gl is larger for planes 
with smaller structure factors, even though the absorp- 
tion coefficient is the same. Consequently, pip' would 
be larger for the weaker reflexions than for the stronger 
ones. The variation ofp and p' with [ F I is indicated in 
Fig. 3. To make the curves more general and applicable 
to crystals with different absorption coefficients, the 
abscissae and ordinates have been made equal to 1/] g] 
and R~/I g[ respectively. They are therefore not equal 
to, but proportional to, I F I and p respectively. The 
actual value of the structure factor corresponding to 
any particular value of the abscissa can be obtained 
from (2). The curves in Fig. 3 have been drawn for k = 0. 
Since RY and R"J are functions of k, curves for other 
values of/c will be slightly different, but the general 
features will remain the same. For any values of/c the 
curves can be computed from (9). I t  will be noticed 
from Fig. 3 that  p and p' are the same for small values of 
] F I, but for larger values, p' increases more rapidly than 
p. In fact, for verylarge valuesof I F ] the curve forp is 
asymptotically parallel to the straight line given by 
Darwin's formula for a non-absorbing crystal (also 
shown in Fig. 3), but displaced downwards by a con- 
stant amount. This fact has already been stated by 

Renninger (1937b). The asymptote to the perfect- 
crystal curve (k = 0) in Fig. 3 is given by the equation 

R~ 8 1 
- - - 6 . 4 .  

Igi= Igl 
This means that the percentage deviation from the 
Darwin value decreases to zero asymptotically for very 
strong reflexions. 

If, therefore, one studies the integrated reflexions of 
different planes of a crystal which is not ideally mosaic, 
then the weakest reflexions would be expected to agree 
with the mosaic-crystal value, while the stronger ones 
would progressively deviate from this. Therefore in the 
determination of I F l values for a crystal from measure- 
ments of the integrated reflexion, weak reflexions will 
yield relatively accurate values of [ F ], since the mosaic 
crystal formula can then be used irrespective of the 

40- 3s / 
30- 

° ~  

25- 
R' 

/ ~  I I I I I I I l J 

0 1 2 3 4 5 6 7 8 9 10 
i~1(~IFI) 

Fig. 3. Variation of integrated reflexion with • for absorbing 
perfect and mosaic crystals (k----0). Abscissae and ordinates 
are in units proportional to _~ and p respectively. 

texture of the crystal. Also, for a strong reflexion, it is an 
advantage to use an asymmetric reflexion, so that  [g[ 
is made large and the disparity between the integrated 
reflexions for a perfect and a mosaic crystal is diminished. 
Alternatively, [g[ may be increased by using longer 
wave-lengths for which the absorption coefficient may 
be larger. 

The results discussed above are strikingly illustrated 
by a comparison of the l l l  and 222 reflexions of 
diamond, p'/p is expected to be much greater for the 
strong II  1 reflexion than for the weak 222 reflexion. 
Renninger's experiments (1937b) indicate that  this is 
the case. Using crystals of different degrees of per- 
fection, he found a ratio of l :13 for l l l  while a ratio 
of only 1 : 1.5 for 222. Experiments made at Bangalore 
by one of the authors (G.N.R.) showed similarly that, 
with crystals varying from near perfect to highly mosaic 
ones, the integrated reflexion for 222 varied only by 
a factor of 2. This result cannot, however, be regarded 
as conclusive, as no precaution was taken to avoid 
double reflexions occurring simultaneously with the 
222 reflexion (Renninger, 1937 b). 
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6. Variation of integrated reflexion with wave-length 
The absorption coefficient of a crystal varies with 

wave-length, so that  g varies with wave-length for a 
particular reflexion. If no absorption edges intervene, 
# increases towards longer wave-lengths, so that [gl 
also increases correspondingly. Consequently, with 
increase of wave-length, the disparity between the 
integrated reflexions of a perfect and a mosaic crystal 
should diminish. This has in fact been shown to be the 
case in a number of crystals by Wooster & Macdonald 
(1948). 

Notation 
~z 

~ ; , ~  

PART H 

It  follows from this that  

P ~ =  Iql 
Pc 

-- 2(0 B -  O) Sin 20 B . 
Real and imaginary parts of the Fourier com- 

ponent of index zero of 4u times the polariz- Then 
ability. 

~ ,  ~ Real and imaginary parts of the Fourier com- 
ponent of index H of 4;r times the polariz- and 
ability. [ q + z2 I 

Flz Structure factor of index H (_-- F ~ + i F ~ ) .  [ q] 
_ 7fm~2 

- ~ * i v  ( ~  + i?~)" 

Y -{½(1-b)~ro+½ba}/(g]~k'~l~lbl). 

- ½(1-b) ~ko/Kl ~k'~14l s I 
( l - b )  m c  s # ~ / ( 1 + ] ¢  2) 

- ~ / ~ , ~ =  F~ /~h .  
# Linear absorption coefficient (= --2~kolA). 

I o Intensity (energy per unit area) of the incident [ql 
parallel and monochromatic beam. 

I ~  Intensity of the reflected beam of index H. 
Thus 

Pc Power (total energy) of incident parallel and 
monochromatic beam. 

P ~  Power of reflected beam of index H. 

R~ Integrated re flexion of index H in y units of 
angle. 

7. Mathematical treatment 
An account of the dynamical theory of X-ray diffraction 
has been given by Zaehariasen (1945), whose notation 
we shall follow in this part of the paper. The supple- 
mentary notation and its relation to that used in Part I 
are set out above. 

The intensity of the beam reflected by the crystal in 
a Bragg reflexion of index H is given by the exact 
formula of Zachariasen (1945, equation (3.189)) for a 
thick crystal possessing an inversion centre. This is 

I~.= b2g21 ~H [z 

Io {[q+z:l+lzl:+J[(lq+z~l+lzl~)s-lq[~]}" 
where q = b K ~  and z=½(1-b)~o+½ba. 

{1 q + : ~ l +  1~1 + + 4 [ ( I q + ~ 1 +  I~ IS) s -  I q 12]} 

{[ q + =s I + I ~ I s -  4[(I q + z~ l + I ~ IS) s -  l q I~]) 
lql 

= L - ~ ( L 2 - 1 ) ,  (16) 

where 

L=([ q + ~  l + l ~ I~)/I q I. (17) 
Now, define 

Y= (½(1--b)~o + ½ba)/(K l ~k'R l ~ ] b l),] 

g- -½(1-b)  ~o/(K I ~ 141 b I), (18) 
tt  t] 

k= ? h / ~ ' £  
[z[ 9 {½(1-b)~o+½ba}~'+{½(1-b)~ro} ~ 
lq] I b I K~ I ?P~ ]S(l÷]c~) 

=(y2 + gg)/(1 +/c 2) 

2 t • t t  2 1 _ l b K  (~+~l / r~)  +{~(1--b)~ko+½ba+i½(1-b)~o} ~] 
] b I K~. I ~ ]2(1+/c~) 

Remembering that  for a Bragg type of reflexion b is 
negative, so that  b = - ] b  I, this may be written in the 
form 

~/[{(½(1 -b )  g0 + ½ba)2- (½( 1 -b )  g0)' 
-lblg2~+lb I g 2 ~ }  2 
+ 4 { - ] b [ g g ~ ' H ~  

l q + zg[ + (½(1-b) ~0 + ½ba)(½(1-b) ~o))2] 
[b [K2(1 + k~')] ~k~ [~ 

__ /[(y~. ge 1 +b2)~+4(yg-k)9]/(1 +b~). 

L ={U~ + g ~ + ] 4 i (u~-  g s - l + ks)s + 4(gU- kY] I}/(1 + k~). 
(19) 

Equations (16) and (19) may be compared with (3.190a) 
and (3.190) of Zachariasen (1945), which read 

PH/Po = i - ~ [ L 2 - ( 1  + 4k2)] 

and L=y2+g2+l~/[(yS--g2-1)2+4(gy-k)~]]. 

These formulae of Zachariasen are approximations 
which hold only when I k ] ~ 1, and under this condition 
they are equivalent to (16) and (19). The formulae (16) 
and (19) are, however, exact and apply quite generally 
to crystals which possess an inversion centre and whose 
thickness can be regarded as infinite compared with the 
penetration of the X-ray beam. 

Miller (1935) has worked out similar formulae for 
symmetric reflexions using the theory of Prins (1930). 
I t  can be shown that  for the special case of symmetric 
reflexions ( b = -  1), equations (16) and (19) reduce to 
those given by Miller. 
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The accurate formulae (16) and (19) have been 
numerically evaluated for values of g varying from 0 to 
- 3.0 and for values of k = 0-0, 0.1 and 0.2. The reflexion 
curves obtained in this way are plotted in Figs. 4, 5 and 
6. Particular examples of such curves have been given 
by various authors, e.g. Renninger (1934) and Zachari- 
asen (1945). For Bragg reflexions g is negative or zero, 
while/c can assume both positive or negative values. 
From equation (19) it follows that  for a given value of 
g the curves for equal and opposite values of/c are 
mirror images about the axis of ordinates and that  their 
areas are equal. 

~ 2 2 1  .g:-3 
, i i I , . 

-3"0 -2-0 -1"0 0 "0 2"0 3"0 
Y 

Fig.  4. Ref lex ion  cu rve  for  a per fec t  c rys t a l  for va r ious  
va lues  o f  g (k = 0). 

-3"0 -2"0 -1"0 

'1 "0 

0"8 

O" 

I 

0 1 "0 2"0 3"0 
Y 

Fig.  5. Re f l ex ion  cu rve  for  a per fec t  c rys t a l  for  
va lues  of  g (k = + 0-1) 

P 

P~ 

.t 

~-1"(  

-3"0 -2'0 -1"0 

var ious  

4'0 

-0"8 

0 1 .o 2.-0 3-0 
Y 

Fig .  6. Ref lox ion  curve  for  a per fec t  c rys t a l  for va r ious  
va lues  o f  g (# = + 0.2). 

The following features of the curves may be noted. 
First, they are symmetrical about y = 0 only when/c = 0. 
Also, in every case, P~/Po for all values of y decreases 
continuously with increasing magnitude of g. This can 
be proved quite generally as follows. For a Bragg 
reflexion g is negative, so tha t  

L 

The first factor is always negative, since L >t 1. Now 

dL) _ 1 

[ ' "  2g(Ye -g~- l+ ld ) -4y (gy - l c ) }  
x - 2 g +  1 ~ [ ( y 2 - g ~ -  1 + k~)2 + 4 ( g y -  k)~] ] 

@ 

Here again, - 2 g  is positive, and the second term can 
be shown to be positive or zero for all values of y ff 

k~/g2 ~< (g~-k ~ + 1). (20) 
Now [k I= ]~r~z [/[ ~k H I, and for a given set of reflecting 
planes the minimum value of I gl for a Bragg reflexion 

is Igl=l,/41/l,/,- l . But 
I,ZTI < l,b; 1, (20 ) 

and therefore k,~/g2<~ 1. Hence (20) is always satisfied. 
Thus (did I g I) (Pr~IPo) is always negative, i.e. PHIPo 
decreases with increasing I g I for all values of y and #. 
The area under the curve should therefore be a mono- 
tonically decreasing function of lg I . 

8. Integrated reflexion 

The integrated reflexion on the glancing-angle scale is 

given by pH=f_ od ° 
dO ~ P H .  

- R b  
dy 

where R~z is the integrated reflexion on the y angle scale 
and is equal to the area under the reflexion curves shown 
in Figs. 4, 5 and 6. Since PH/Po is a function of g, k and 
y only, R~z is a function of g and k only. 

½(1- b)~r' 0 +b(OB--0) sin20 B 
Now y - -  Kl  141bl - - '  

dO 1 KI ~:~ I 
and therefore 

gy ~/[bl sin 20B 

According to equation (3.95) of Zachariasen 

e2h~ NI FH[ I 

and hence 
1 K e2h 2 (21) 

PH = ~/] b I sin 20 B nmc 2 
Thus, to determine PH it is necessary to evaluate 
R~H(g, k). In the last section it was shown tha t  for a given 
value of k the area under the curve, and therefore R~, 
is a monotonically decreasing function of I g]" Also for 
a given value of g the areas under the curves for equal 
and opposite values of k are equal. Hence R~ is a 
function of ]k I only, and in the discussion of the 
variation of integrated reflexion with k, absolute values 
only of/c need be considered. 

The evaluation of R~s can be carried out analytically 
in some special cases. Thus, when absorption is negligible, 
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the Darwin formula is obtained (see Zachariasen, 1945, 
p. 142, Table 3-2). This is 

Y __8 R R - -  ~ .  

Consider now the case of a reflexion for which I g I >~ 1 
and I kl ,~ Igl. Then 

L={(y  ~ +99)+ IJ[(y~- g~) ~. + 4y~g~] l}/(1 + k~) 
--2(y~ +g~)/(1 +k 2) 

so that  L >> 1. Consequently, 

P ~ / P o = L - ~ ( L  9 -  1)= 1/2L=(1 +k~)/[4(y2+gg)]. 
This can be integrated and gives 

f + : P u -  zr( l+  kg) (22) ey=i Igl 
Hence 1 N~e4ha K ~ 1 

p~t=~-fi m~.c , • SIn0~COS0B [ F ~  [~ ½(l_b------- ~ ,  (23) 

which is exactly the expression for an asymmetric Bragg 
reflexion from a mosaic crystal. 

The assumption made in the above derivation that  
[ g [ is large may be secured in either of two possible ways: 
(i) I ¢,o I >> I or ~ (i-b)/,,/lb I is large, which 
happens ff b-~ 0 or ~ o~, i.e. when either the incident 
or reflected beam is very oblique to the surface. In such 
a case, a perfect crystal gives the same integrated 
refiexion as a mosaic crystal. 

The integration was done graphically from the curves 
shown in Pigs. 4, 5 and 6 for the range - 3.0 < y < 3.0. 
Outside this range the value of the integral was found 
by using an approximate formula-with a correction. 
The numerical values of R~r are probably correct to 
2 %. They are plotted in Fig. 1 together with the 
con'esponding values for a mosaic crystal. These results 
are discussed in detail in § 2. 

The authors are indebted to Prof. Sir Lawrence Bragg 
and Dr W. H. Taylor for their encouragement and 
interestinthis work. One of them (P.B.H.) acknowledges 
the help of a maintenance grant from the Department 
of Scientific and Industrial Research and financial 
support from the British Iron and Steel Research 
Association. The other (G.N.R.) is indebted to the Royal 
Commission for the Exhibition of 1851 for the award 
of a Research Scholarship. 

References  

BACON, G. E .  & LOWDE, R.  D.  (1949). A e ~  Cryst. 1, 
803. 

DARWIN, C. G. (1914). Phil. Mag. 27, 675. 
EVANS, R. C., HIRSCrr, P. B. & KEnT~_~, J. N. (1948). 

Acta Cryst. 1, 124. 
EW~D, P. P. (1918). Ann. Phys., Lpz., 54, 419. 
EWALD, P. P. (1924). Z. Phys. 30, 1. 
FA_WKUCHEN, I. (1937). Nature, Lend., 139, 193. 
FX~'XUCHEN, I. (1938). Phys. Rev. 53, 910. 
JAZZES, R. W. {1948). The Optical Principles of the 

Diffraction of X-rays. London: Bell. 
Kon-rJ~.R, M. (1933). Ann. Phys., Lpz., 18, 265. 
LAUE, M. VO~ (1941). R6ntger~trahl-Interferenzen. Leip- 

zig: Becker and Erler. 
Mrr.T.~R, F. (1935). Phys. Rev. 47, 209. 
P~RA~r, L. G. (1932). Phys. Rev. 41,561. 
PRrNs, J. A. (1930). Z. Phys. 63, 477. 
RE~r~INQER, M. (1934). Z. Krystallogr. 89, 344. 
RE~q~rL~GER, M. (1937a). Z. Krystallogr. 97, 95. 
R E ~ S E R ,  M. (1937b). Z. Kryslallogr. 97, 107. 
WOOSTER, W. A. & M~CDONAX~u, G. M. (1948). Acta 

Cryst. 1, 49. 
ZACHA~.ASE~, W. H. (1945). The Theory of X-ray 

Diffraction in Crystals. New York: Wiley. 

Ac~a Gryst. (1950). 3, 194 
The Crystal Structure ofp-Dinitrobenzene 
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The previous two reports on the crystal structure of p-dinitrobenzene are shown to be correct in 
essence, but to possess serious internal inconsistencies. The earlier of these investigations apparently 
ceased before the Fourier series was completely refined, while the later determination gives a set of 
atomic co-ordinates which is not in accord with the given description of the molecule. These co- 
ordinates show that the molecule is not coplanar, the plane of the nitro group making an angle of 
11½ ° with the plane of the benzene ring. A further structure is proposed, based upon a new double 
Fourier series investigation, in which the molecule remains non-coplanar, the angle between the two 
planes being 9½ °. The C-N distance is changed from 1.41 to 1.48 A.; the other bond distances and 
angles remain unaltered. 

I n t r o d u c t i o n  

The first complete crystal-structure investigation of 
p-dinitrobenzene was reported by James, King & 

* Now at the School of Chemistry, University of Minnesota, 
Minneapolis 14, Minnesota, U.S.A. 

Horrocks (1935), who employed the double Fourier 
series method, based upon the absolute intensities from 
the zonal planes, and using Me K~ radiation. The result 
was a very distorted molecule, which became the object 
of considerable criticism, especially by Pauling (1938, 


